首页> 外文OA文献 >Extensible grids: uniform sampling on a space-filling curve
【2h】

Extensible grids: uniform sampling on a space-filling curve

机译:可扩展网格:在空间填充曲线上进行均匀采样

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We study the properties of points in $[0,1]^d$ generated by applyingHilbert's space-filling curve to uniformly distributed points in $[0,1]$. Fordeterministic sampling we obtain a discrepancy of $O(n^{-1/d})$ for $d\ge2$.For random stratified sampling, and scrambled van der Corput points, we get amean squared error of $O(n^{-1-2/d})$ for integration of Lipshitz continuousintegrands, when $d\ge3$. These rates are the same as one gets by sampling on$d$ dimensional grids and they show a deterioration with increasing $d$. Therate for Lipshitz functions is however best possible at that level ofsmoothness and is better than plain IID sampling. Unlike grids, space-fillingcurve sampling provides points at any desired sample size, and the van derCorput version is extensible in $n$. Additionally we show that certaindiscontinuous functions with infinite variation in the sense of Hardy andKrause can be integrated with a mean squared error of $O(n^{-1-1/d})$. It waspreviously known only that the rate was $o(n^{-1})$. Other space-fillingcurves, such as those due to Sierpinski and Peano, also attain these rates,while upper bounds for the Lebesgue curve are somewhat worse, as if thedimension were $\log_2(3)$ times as high.
机译:我们研究通过将希尔伯特的空间填充曲线应用于$ [0,1] $中均匀分布的点而生成的$ [0,1] ^ d $中的点的属性。对于确定性抽样,对于$ d \ ge2 $,我们获得了$ O(n ^ {-1 / d})$的差异。对于随机分层抽样和加扰的范德corput点,我们得出了$ O(n ^)的平方误差{-1-2 / d})$,用于合并Lipshitz连续整数,当$ d \ ge3 $时。这些比率与通过在$ d $维度网格上采样而获得的比率相同,并且随着$ d $的增加,它们显示出恶化的趋势。但是,在那种平滑度下,最好使用Lipshitz函数的速率,并且比普通IID采样更好。与网格不同,空间填充曲线采样可提供任意所需样本大小的点,并且van derCorput版本可扩展为$ n $。另外,我们表明,在Hardy和Krause的意义上具有无限变化的某些不连续函数可以与均方误差$ O(n ^ {-1-1 / d})$进行积分。以前只知道比率是$ o(n ^ {-1})$。其他空间填充曲线(例如,由于Sierpinski和Peano引起的填充曲线)也达到了这些速率,而Lebesgue曲线的上限则稍差一些,好像该维度是$ \ log_2(3)$倍。

著录项

  • 作者

    He, Zhijian; Owen, Art B.;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号